Summary:

C Piscine

C 12

This document is the subject for the module C 12 of the C Piscine @ 42.

Contents

11

111

v

VI

VII

VIII

IX

XI

XII

XII1

XIV

XV

XVI

XVII

XVIII

XIX

XX

Foreword

Instructions

Exercice 00 :

Exercice 01 :

Exercice 02 :

Exercice 03 :

Exercice 04 :

Exercice 05

Exercice 06 :

Exercice 07 :

Exercice 08

Exercice 09 :

Exercice

Exercice

Exercice

Exercice

Exercice

Exercice

Exercice

Exercice

10 :

11

12 :

13 :

14 :

15 :

16 :

17 :

ft create elem

ft_ list_ push_ front
ft list size

ft list last

ft_ list_ push__back

: ft_ list_ push_ strs

ft list clear

ft list at

: ft_ list reverse

ft list foreach

ft_list foreach_ if

: ft_ list find

ft_list remove_ if

ft_ list__merge

ft list sort

ft_list reverse_ fun
ft__sorted_ list insert

ft_ sorted_ list__merge

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Chapter 1

Foreword

SPOILER ALERT
DON'T READ THE NEXT PAGE

C Piscine C 12

You've been warned.

e In Star Wars, Dark Vador is Luke’s Father.

e In The Usual Suspects, Verbal is Keyser Soze.

e In Fight Club, Tyler Durden and the narrator are the same person.

e In Sixth Sens, Bruce Willis is dead since the beginning.

e In The others, the inhabitants of the house are ghosts and vice-versa.
e In Bambi, Bambi’s mother dies.

e In The Village, monsters are the villagers and the movie actually takes place in
our time.

e In Harry Potter, Dumbledore dies.

e In Planet of apes, the movie takes place on earth.

e In Game of thrones, Robb Stark and Joffrey Baratheon die on their wedding day.
e In Twilight, Vampires shine under the sun.

e In Stargate SG-1, Season 1, Episode 18, O’Neill and Carter are in Antartica.
e In The Dark Knight Rises, Miranda Tate is Talia AI’Gul.

e In Super Mario Bros, The princess is in another castle.

Chapter 11

Instructions

e Only this page will serve as reference: do not trust rumors.
e Watch out! This document could potentially change before submission.
e Make sure you have the appropriate permissions on your files and directories.

e You have to follow the submission procedures for all your exercises.

e Your exercises will be checked and graded by your fellow classmates.

e On top of that, your exercises will be checked and graded by a program called
Moulinette.

e Moulinette is very meticulous and strict in its evaluation of your work. It is entirely
automated and there is no way to negotiate with it. So if you want to avoid bad
surprises, be as thorough as possible.

e Moulinette is not very open-minded. It won’t try and understand your code if it
doesn’t respect the Norm. Moulinette relies on a program called norminette to
check if your files respect the norm. TL;DR: it would be idiotic to submit a piece
of work that doesn’t pass norminette’s check.

e These exercises are carefully laid out by order of difficulty - from easiest to hardest.
We will not take into account a successfully completed harder exercise if an easier
one is not perfectly functional.

e Using a forbidden function is considered cheating. Cheaters get -42, and this grade
is non-negotiable.

e You'll only have to submit a main() function if we ask for a program.
e Moulinette compiles with these flags: -Wall -Wextra -Werror, and uses gcc.
e [f your program doesn’t compile, you'll get 0.

e You cannot leave any additional file in your directory than those specified in the
subject.

e Got a question? Ask your peer on the right. Otherwise, try your peer on the left.

C Piscine C 12

e Your reference guide is called Google / man / the Internet /
e Check out the "C Piscine" part of the forum on the intranet, or the slack Piscine.

e Examine the examples thoroughly. They could very well call for details that are
not explicitly mentioned in the subject...

e By Odin, by Thor ! Use your brain !!!

e For the following exercises, you have to use the following structure :

e You'll have to include this structure in a file ft_list.h and submit it for each
exercise.

e From exercise 01 onward, we’ll use our ft_ create_elem, so make arrangements (it
could be useful to have its prototype in a file ft_list.h...).

Chapter 111

Exercice 00 : ft create elem

l Exercise 00
14
'4

ft create elem

Turn-in directory : ex00/

Files to turn in : ft_create_elem.c, ft_list.h

Allowed functions : malloc

e (Create the function ft_create_elem which creates a new element of t_list type.
e [t should assign data to the given argument and next to NULL.
e Here’s how it should be prototyped :

t_list ¢ data) ;

Chapter 1V

Exercice 01 : ft_list push_front

l Exercise 01
14
'4

ft_ list_ push_ front

Turn-in directory : ex01/
Files to turn in : ft_list_push_front.c, ft_list.h
Allowed functions : ft_create_elem

Create the function ft_list_push_front which adds a new element of type t_1list
to the beginning of the list.

It should assign data to the given argument.

If necessary, it’ll update the pointer at the beginning of the list.

Here’s how it should be prototyped :

(t_list begin_list,

Chapter V

Exercice 02 : ft list size

l Exercise 02
14
'4

ft list size

Turn-in directory : ex02/

Files to turn in : ft_list_size.c, ft_list.h

Allowed functions : None

e Create the function ft_list_size which returns the number of elements in the
list.

e Here’s how it should be prototyped :

(t_list *begin_list);

Chapter VI

Exercice 03 : ft list last

l Exercise 03
14
'4

ft list last

Turn-in directory : ex03/
Files to turn in : ft_list_last.c, ft_list.h
Allowed functions : None

e (Create the function ft_list_last which returns the last element of the list.

e Here’s how it should be prototyped :

t_list (t_list *begin_list);

Chapter VII

Exercice 04 : ft_list push_back

l Exercise 04
14
'4

ft_ list_ push_ back

Turn-in directory : ex04/
Files to turn in : ft_list_push_back.c, ft_list.h
Allowed functions : ft_create_elem

Create the function ft_list_push_back which adds a new element of t_list type
at the end of the list.

It should assign data to the given argument.

If necessary, it’ll update the pointer at the beginning of the list.

Here’s how it should be prototyped :

(t_list begin_list, data);

10

Chapter VIII

Exercice 05 : ft_list push_strs

l Exercise 05
14
'4

ft_ list_ push_ strs

Turn-in directory : ex05/

Files to turn in : ft_list_push_strs.c, ft_list.h

Allowed functions : ft_create_elem

Create the function ft_list_push_strs which creates a new list that includes all
the string pointed by the element in strs.

size is the size of strs

The first element should be at the end of the list.

The first link’s address in the list is returned.

Here’s how it should be prototyped :

t_list (size, strs);

11

Chapter IX

Exercice 06 : ft list clear

l Exercise 06
14
'4

ft_list clear

Turn-in directory : ex06/

Files to turn in : ft_list_clear.c, ft_list.h

Allowed functions : free

e Create the function ft_list_clear which remove and free all links from the list.
e free fct to free each data
e Here’s how it should be prototyped :

(t_list +*begin_list, (*free_fct) ());

12

Chapter X

Exercice 07 : ft_ list at

l Exercise 07
14
'4

ft_list_at

Turn-in directory : ex07/
Files to turn in : ft_list_at.c, ft_list.h
Allowed functions : None

e Create the function ft_list_at which returns the Nth element of the list, knowing
that the first element of the list is when nbr equal 0.

e In case of error, it should return a null pointer.

e Here’s how it should be prototyped :

t_list (t_list *begin_list,

13

Chapter XI

Exercice 08 : ft list reverse

l Exercise 08
14
'4

ft list reverse

Turn-in directory : ex08/

Files to turn in : ft_list_reverse.c

Allowed functions : None

e (Create the function ft_list_reverse which reverses the order of a list’s elements.
The value of each element must remain the same.

e Beware in that function we will use our own ft list.h

e Here’s how it should be prototyped :

(t_list begin_list);

14

Chapter XII

Exercice 09 : ft list foreach

l Exercise 09
14
'4

ft_list foreach

Turn-in directory : ex09/
Files to turn in : ft_1list_foreach.c, ft_list.h
Allowed functions : None

e Create the function ft_list_foreach which applies the function given as argument
to each of the list’s elements.

e f should be apply with the same order as the list

e Here’s how it should be prototyped :

(t_list *begin_list,

e The function pointed by f will be used as follows :

(*f) (list_ptr->data) ;

Chapter XIII

Exercice 10 : ft list foreach if

l Exercise 10
14
'4

ft list foreach if

Turn-in directory : ex10/
Files to turn in : ft_list_foreach_if.c, ft_list.h
Allowed functions : None

Create the function ft_list_foreach_if which applies the function given as ar-
gument to some of the list’s elements.

Only apply the function to the elements when cmp with data_ref, cmp returns 0

f should be apply with the same order as the list

Here’s how it should be prototyped :

ft_list_foreach_if(t_list begin_list,
data_ref, (+emp) O)

e Functions pointed by f and by cmp will be used as follows :

(*f) (list_ptr->data);
(*cmp) (list_ptr->data, data_ref);

For example, the function cmp could be ft_strcmp...

=

16

Chapter XIV

Exercice 11 : ft list find

l Exercise 11
14
'4

ft list find

Turn-in directory : exll/
Files to turn in : ft_1list_find.c, ft_list.h
Allowed functions : None

e Create the function ft_list_find which returns the address of the first element’s
data compared to data_ref with cmp makes cmp to return 0.

e Here’s how it should be prototyped :

(t_list *begin_list, data_ref, (xcmp)) 5

e Function pointed by cmp will be used as follows :

(*cmp) (list_ptr->data, data_ref);

17

Chapter XV

Exercice 12 : ft list remove_ if

l Exercise 12
14
'4

ft list remove if

Turn-in directory : ex12/
Files to turn in : ft_list_remove_if.c, ft_list.h
Allowed functions : free

Create the function ft_list_remove_if which erases off the list all elements whose
data compared to data_ref with cmp makes cmp to return 0.

The data from an element that should be erase, should be freed using free fct

Here’s how it should be prototyped :

(t_list **begin_list, data_ref, (+emp) O, (#free_fct) (

Function pointed by cmp and by free_fct will be used as follows :

(*cmp) (list_ptr->data, data_ref);
(*free_fct) (list_ptr->data);

18

Chapter XVI

Exercice 13 : ft_list merge

l Exercise 13
14
'4

ft_ list_ merge

Turn-in directory : ex13/

Files to turn in : ft_list_merge.c, ft_list.h

Allowed functions : None

e Create the function ft_list_merge which places elements of a list begin2 at the
end of an other list beginl.

e Element creation is not authorised.

e Here’s how it should be prototyped :

(t_list **begin_listl, t_list *begin_list2);

19

Chapter XVII

Exercice 14 : ft list sort

l Exercise 14
14
'4

ft_list_ sort

Turn-in directory : ex14/
Files to turn in : ft_list_sort.c, ft_list.h
Allowed functions : None

e Create the function ft_list_sort which sorts the list’s elements by ascending order
by comparing two elements by comparing their data with a function.

e Here’s how it should be prototyped :

(t_list *+*begin_list, Ckcmp) ()) 5

e Function pointed by cmp will be used as follows :

(*cmp) (list_ptr->data, list_other_ptr->data);

cmp could be for instance ft_strcmp.

=

Chapter XVIII

Exercice 15 : ft list reverse fun

l Exercise 15
14
'4

ft list reverse fun

Turn-in directory : ex15/

Files to turn in : ft_list_reverse fun.c, ft_list.h

Allowed functions : None

e Create the function ft_list_reverse_fun which reverses the order of the elements
of the list.

e Here’s how it should be prototyped :

(t_list *begin_list);

21

Chapter XIX

Exercice 16 : ft sorted list insert

l Exercise 16
14
'4

ft sorted list insert

Turn-in directory : ex16/
Files to turn in : ft_sorted_list_insert.c, ft_list.h

Allowed functions : ft_create_elem

e (Create the function ft_sorted_list_insert which creates a new element and
inserts it into a list sorted so that it remains sorted in ascending order.

e Here’s how it should be prototyped :

(t_list #*begin_list, data, (xcmp)) 5

e Function pointed by cmp will be used as follows :

(*cmp) (list_ptr->data, list_other_ptr->data);

Chapter XX

Exercice 17 : ft_ sorted_ list merge

l Exercise 17
14
'4

ft_ sorted_ list__merge

Turn-in directory : ex17/
Files to turn in : ft_sorted_list_merge.c, ft_list.h
Allowed functions : None

e (Create the function ft_sorted_list_merge which integrates the elements of a
sorted list begin?2 in another sorted list beginl, so that beginl remains sorted by
ascending order.

e Here’s how it should be prototyped :

(t_list **begin_listl, t_list *begin_list2, (Gremp)) 5

e Function pointed by cmp will be used as follows :

(*cmp) (1ist_ptr->data, list_other_ptr->data);

23

	Foreword
	Instructions
	Exercice 00 : ft_create_elem
	Exercice 01 : ft_list_push_front
	Exercice 02 : ft_list_size
	Exercice 03 : ft_list_last
	Exercice 04 : ft_list_push_back
	Exercice 05 : ft_list_push_strs
	Exercice 06 : ft_list_clear
	Exercice 07 : ft_list_at
	Exercice 08 : ft_list_reverse
	Exercice 09 : ft_list_foreach
	Exercice 10 : ft_list_foreach_if
	Exercice 11 : ft_list_find
	Exercice 12 : ft_list_remove_if
	Exercice 13 : ft_list_merge
	Exercice 14 : ft_list_sort
	Exercice 15 : ft_list_reverse_fun
	Exercice 16 : ft_sorted_list_insert
	Exercice 17 : ft_sorted_list_merge

